A comparison between the reaction of $\mathrm{P}_{2} \mathrm{Ph}_{4}$ with $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ and the reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$

Andrew J.M. Caffyn ${ }^{\text {a,* }}$, Martin J. Mays ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad \& Tobago
${ }^{\mathrm{b}}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

Received 25 January 2005; accepted 16 February 2005
Available online 23 March 2005

Abstract

Reaction of $\mathrm{P}_{2} \mathrm{Ph}_{4}$ with the diyne-diol complex $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ in toluene at $65^{\circ} \mathrm{C}$ gives $\left[\left\{\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right](\mathbf{1})$. Thermolysis of $\mathbf{1}$ at $95^{\circ} \mathrm{C}$ leads to $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{5}\right\}_{2}\right.$ $\left.\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ (2) and $\left[\mathrm{Co}_{4}\left\{\mu_{4}-\mathrm{CH}_{2}=\mathrm{CCC}=\mathrm{C}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{OCO}\right\}\left(\mu_{2}-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7}\right]$ (3). The structures of $\mathbf{1}-\mathbf{3}$ have been established by X-ray crystallography. In $\mathbf{1}$, a pseudoequatorial $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand bridges the cobaltcobalt bond of a $\mathrm{Co}_{2}(-\mathrm{C} \equiv \mathrm{C}-)(\mathrm{CO})_{4}$ unit. By contrast, in isomeric 2, a pseudoaxial $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand spans two $\mathrm{Co}_{2}(-\mathrm{C} \equiv \mathrm{C}-)(\mathrm{CO})_{5}$ units, a new coordination mode for $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{5} \mathrm{~L}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}\right.\right.$-diyne) $]$ complexes. Complex 3 arises from dehydration-cyclocarbonylation of the diyne-diol in $\mathbf{1}$ to give a $2(5 \mathrm{H})$-furanone, a process that has not been previously reported. Reaction of $\mathrm{HOCH}_{2} \mathrm{C} \equiv$ $\mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$ with $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ at $80^{\circ} \mathrm{C}$ in toluene gave $\left[\mathrm{Co}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{6}\right],\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\right.\right.$ $\left.\left.\mathrm{CCCH}_{2} \mathrm{OH}\right)\right]$ and $\left[\mathrm{Co}_{2}\left\{\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CCCH}_{2} \mathrm{OH}\right) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CO}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ (4). The regiochemistry of 4 was confirmed by X-ray crystallography.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Cobalt diyne; Tetraphenylbiphosphine; 2,4-hexadiyne-1,6-diol; 2(5H)-furanone

1. Introduction

Phosphorus-donor ligands have been observed to undergo many intramolecular coupling, fragmentation and/or rearrangement reactions in organometallic complexes. Cobalt carbonyl complexes containing phospho-rus-donor ligands are amongst the most active in reactions of this type [1-20]. The study of $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-$ Co bond cleavage and formation in these complexes provides an insight into aspects of the chemistry of cobalt

[^0]carbonyl phosphine hydroformylation catalysts [21]. In previous work, we have described the reactions of $\left[\mathrm{Co}_{2}(\mu\right.$-alkyne $\left.)(\mathrm{CO})_{6}\right]$ complexes with $\mathrm{P}_{2} \mathrm{Ph}_{4}$, which lead to new dinuclear cobalt complexes containing four- and five-membered metallacyclic rings [1]. The four-membered metallacyclic rings are derived from the coupling of the alkyne with a PPh_{2} group and the fivemembered rings from the additional incorporation of CO. We subsequently found an alternative strategy for the synthesis of such compounds involving the reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with alkynes (Scheme 1) [2]. We have now studied the corresponding reactions of cobalt diyne complexes and, in this paper, we report both the reactivity of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}\right.\right.$-diyne $\left.)\right]$ with $\mathrm{P}_{2} \mathrm{Ph}_{4}$ and the reactivity of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with diynes.

Scheme 1.

2. Results and discussion

2.1. Reactivity of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2}\right.\right.$ $\left.\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)$] towards $\mathrm{P}_{2} \mathrm{Ph}_{4}$

Reaction of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\right.\right.$ $\left.\left.\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ with one equivalent of $\mathrm{P}_{2} \mathrm{Ph}_{4}$ in toluene at $65^{\circ} \mathrm{C}$ gave, after purification by column chromatography, $\left[\left\{\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HO}\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right](\mathbf{1})$ in 47% yield as the single major product (Scheme 2). Thermolysis of $\mathbf{1}$ in toluene at $95^{\circ} \mathrm{C}$ gave, after separation by column chromatography, brown crystalline $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{5}\right\}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HO}\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)$] (2) (23% yield) and black crystalline $\left[\mathrm{Co}_{4}\left\{\mu_{4}-\mathrm{CH}_{2}=\mathrm{CCC}=\mathrm{C}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{OCO}\right\}\right.$ $\left(\mu_{2}-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7}(\mathbf{3})(21 \%$ yield). Complexes $\mathbf{1}-\mathbf{3}$ have been characterized spectroscopically and their structures confirmed by X-ray diffraction studies (see below). In complex 1 , a bridging $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand replaces two CO groups in pseudoequatorial sites on one $\mathrm{Co}_{2}(-\mathrm{C} \equiv$ $\mathrm{C}-)(\mathrm{CO})_{6}$ unit, leaving the other $\mathrm{Co}_{2}(-\mathrm{C} \equiv \mathrm{C}-)(\mathrm{CO})_{6}$ unit unsubstituted. The alkyne functionalities of the diyne in 1 adopt a relative configuration such that the two $\mathrm{CH}_{2} \mathrm{OH}$ substituents are cis to each other. Complex

(1)

(2)
(3)

Scheme 2.
$\mathbf{2}$ is isomeric with $\mathbf{1}$, but in $\mathbf{2}$ the $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand bridges the pseudoaxial positions of two non-bonded cobalt atoms on different $\mathrm{Co}_{2}(-\mathrm{C} \equiv \mathrm{C}-)(\mathrm{CO})_{5}$ units. This ligand coordination mode has not been previously observed for [$\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}(\mu$-diyne $\left.)\right]$ complexes. Also in contrast to 1, the two coordinated alkyne functionalities in $\mathbf{2}$ adopt a relative configuration such that the $\mathrm{CH}_{2} \mathrm{OH}$ substituents are trans.

The IR spectrum of $\mathbf{1}$ corresponds closely to that of $\left[\left\{\mathrm{Co}_{2}(\mu-\mathrm{bma})(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{PhC} \equiv\right.\right.$ $\mathrm{C}-\mathrm{C} \equiv \mathrm{CPh}$)] (bma $=2,3$-bis(diphenylphosphino)maleic anhydride). Yang et al. were unable to unequivocally assign all the $v(\mathrm{CO})$ bands in this complex [3]. The compound was thermally sensitive (as is $\mathbf{1}$) and no X-ray structure could be obtained. Nevertheless, from spectroscopic data, a structure with a bridging bma ligand occupying pseudoequatorial sites was proposed. This structural assignment is now supported by the similarity of the IR spectrum of the bma complex to that of $\mathbf{1}$. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1}$ gives a single resonance at $\delta 7.2$, which is within the range of values, $\delta 3-11$, observed for other complexes of the type $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}-\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)(\mathrm{CO})_{4}\right] \quad\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CO}_{2}\right.$ $\mathrm{Me}, \mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$) in which a $\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand is bonded pseudoequatorially [1]. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{2}$ gives a single resonance as in $\mathbf{1}$, but shifted to lower field at $\delta 93.3$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for 2 are consistent with the proposed structure, in which a plane of symmetry bisects the molecule through the midpoint of the central $\mathrm{C}-\mathrm{C}$ bond of the diyne and the midpoint of the $\mathrm{P}-\mathrm{P}$ bond. The plane of symmetry renders the two inner diyne carbon atoms equivalent, as it does the two outer diyne carbons and the two methylene carbons. As a result, one CH_{2}, one $\mathrm{C} \equiv \mathrm{CCH}_{2}$ and one $C \equiv \mathrm{CCH}_{2}$ signal are observed in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$. This contrasts with the observation of two signals each for the same pairs of carbon atoms in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$. This latter observation is accounted for by the fact that in 1 the plane of symmetry lies along the diyne ligand rather than perpendicular to it. In the IR spectrum of 3 a $v(\mathrm{CO})$ band characteristic of a μ-CO ligand is observed at $1824 \mathrm{~cm}^{-1}$. In addition, a $v(\mathrm{CO})$ band characteristic of a β - γ-unsaturated γ-lactone is observed at $1761 \mathrm{~cm}^{-1}$. The vinyl protons in 3 appear as two doublets centered at $\delta 4.51$ and $\delta 3.54$, each weakly coupled to the $\mu-\mathrm{PPh}_{2}$ phosphorus. No coupling was resolved between the geminal vinyl protons. This correlates with other $\mu-\mathrm{CR}=\mathrm{CH}_{2}$ vinyl ligands for which negligible, or only a small coupling is observed [22-28]. The CH_{2} protons of the lactone ring are observed as multiplets at $\delta 4.32$ and 4.18 with a geminal $\mathrm{H}-\mathrm{H}$ coupling of 14 Hz and smaller unresolved coupling to both phosphorus atoms. An HMQC experiment further confirmed the assignments by verifying that the two CH_{2} vinyl protons and two CH_{2} lac-
tone protons are each, respectively, attached to the same carbon atoms. Two peaks are observed in the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{3}$. One peak at $\delta 81.9$ is tenta-
tively assigned to the $\mu_{4}-\mathrm{CH}_{2}=\mathrm{CCC}=\mathrm{C}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{OCO}$ ligand, while a broader resonance at $\delta 7.1$ is assigned to the $\mu-\mathrm{PPh}_{2}$ group. As noted previously, ${ }^{31} \mathrm{P}$ NMR signals for phosphido groups bridging metals that are not directly bonded to each other are found substantially upfield of phosphido ligands bridging directly bonded metals [$13,29,30]$.

The formation of $\mathbf{1}$ from the diyne complex [$\left\{\mathrm{Co}_{2}\right.$ $\left.\left.(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ parallels the initial reactivity of the alkyne complexes $\left[\mathrm{Co}_{2}(\mu\right.$-alkyne $\left.)(\mathrm{CO})_{6}\right]$ with $\mathrm{P}_{2} \mathrm{Ph}_{4}$. The subsequent thermolysis of 1 (Scheme 2), however, clearly follows a different path from the thermolysis of $\left[\mathrm{Co}_{2}(\mu\right.$-alkyne $)$ $\left.\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)(\mathrm{CO})_{6}\right]$ (Scheme 1). It also follows a different path from that reported for the thermolysis of other $\left[\left\{\mathrm{Co}_{2}(\mu\right.\right.$-diphosphine $\left.)(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left\{\mu-\eta^{2}: \mu-\eta^{2}-(1\right.$, 3-diyne) $\}$] complexes where either partial or full diyne decomplexation has been observed [3,31]. This may be due to the presence of the reactive propargyl alcohol group, $\mathrm{CH}_{2} \mathrm{OH}$, in 1. The thermolytic transformation of $\mathbf{1}$ to $\mathbf{2}$ results in a "cis" to "trans" conversion of the orientation of the $\mathrm{CH}_{2} \mathrm{OH}$ substituents on the diyne. Possible reasons for this conversion include: (a) that pseudoaxial phosphine substitution is thermodynamically favoured over pseudoequatorial substitution: (b) that two units of a phosphine-monosubstituted cobalt pentacarbonyl are thermodynamically favoured over the disproportionated alternative of one unit of a disubstituted tetracarbonyl and one of an unsubstituted hexacarbonyl complex: (c) that a staggered conformation of the bidentate $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand is favoured over an eclipsed conformation.

Complex $\mathbf{3}$ arises from $\mathbf{1}$ by dehydration-cyclocarbonylation of the diyne-diol, coupled with phosphorusphosphorus bond cleavage and diyne functionalisation by one phosphido group. A related dehydration of 2,4-hexadiyne-1,6-diol on reaction with $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ has been reported. No CO insertion was observed in this dehydration, however, and furan ring formation occurred yielding $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu_{2},-\eta^{3}-\mathrm{OCH}=\mathrm{CHC}=\mathrm{CCCH}_{3}\right)(\mathrm{CO})_{10}\right]$ [32,33]. Dehydration-cyclocarbonylation of a diynediol to give a $2(5 \mathrm{H})$-furanone, as observed here, has not been previously reported. Cyclocarbonylation of propargyl alcohols with carbon monoxide to $2(5 \mathrm{H})$ furanones is well established, however, and is catalysed by palladium and rhodium complexes [34-40]. Various 4 -heterosubstituted $2(5 \mathrm{H})$-furanones have also been made from propargyl alcohols. These include oxygen, sulphur and selenium substituted lactones [41-43]. Although several 4-phosphorus (V) substituted $2(5 \mathrm{H})$ furanones have been made, only one phosphorus(III) example has been previously reported [44].

Fig. 1. ORTEP diagram of $\left[\left\{\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mathrm{CO}_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left\{\mu-\eta^{2}: \mu-\right.\right.\right.$ $\left.\left.\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right\}\right]$ (1), showing thermal ellipsoids at the 50% probability level.

2.2. Crystal structure of (1)

The structure of $\mathbf{1}$ is displayed in Fig. 1, and selected bond distances and angles are presented in Table 1. The $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}-\mathrm{RC} \equiv \mathrm{CR}\right)(\mathrm{CO})_{4}\right]$ part of the structure closely resembles that of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{2}\right.\right.$ $\left.\left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\}(\mathrm{CO})_{4}\right][1]$. The two phosphorus donor atoms

Table 1
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.4500(9)$	$\mathrm{Co}(3)-\mathrm{Co}(4)$	$2.4673(9)$
$\mathrm{Co}(1)-\mathrm{C}(12)$	$1.969(4)$	$\mathrm{Co}(1)-\mathrm{C}(13)$	$1.970(4)$
$\mathrm{Co}(1)-\mathrm{P}(1)$	$2.2275(13)$	$\mathrm{Co}(2)-\mathrm{C}(12)$	$1.948(4)$
$\mathrm{Co}(2)-\mathrm{C}(13)$	$1.948(4)$	$\mathrm{Co}(2)-\mathrm{P}(2)$	$2.2206(13)$
$\mathrm{Co}(3)-\mathrm{C}(15)$	$1.959(5)$	$\mathrm{Co}(3)-\mathrm{C}(14)$	$1.973(4)$
$\mathrm{Co}(4)-\mathrm{C}(15)$	$1.949(4)$	$\mathrm{Co}(4)-\mathrm{C}(14)$	$1.984(4)$
$\mathrm{P}(1)-\mathrm{P}(2)$	$2.2651(18)$	$\mathrm{O}(11)-\mathrm{C}(11)$	$1.423(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.496(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.348(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.435(6)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.343(6)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.491(6)$	$\mathrm{O}(16)-\mathrm{C}(16)$	$1.433(5)$
$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{Co}(2)$	$87.50(4)$	$\mathrm{P}(2)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$87.45(4)$
$\mathrm{Co}(1)-\mathrm{P}(1)-\mathrm{P}(2)$	$92.03(6)$	$\mathrm{Co}(2)-\mathrm{P}(2)-\mathrm{P}(1)$	$92.43(6)$
$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	$112.2(4)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$133.6(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$139.7(4)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$142.0(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$140.5(4)$	$\mathrm{O}(16)-\mathrm{C}(16)-\mathrm{C}(15)$	$109.4(4)$

Fig. 2. ORTEP diagram of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{5}\right\}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}: \mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ (2), showing thermal ellipsoids at the 50% probability level.
occupy pseudoequatorial positions and the Co-P-P-Co ring is nearly planar $(\mathrm{C}(23)-\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(35)$ torsion angle $=3.4^{\circ}$) and close to square. The $\mathrm{P}-\mathrm{P}$ bond length, $2.2651(18) \AA$, is also similar to that observed in $\left[\mathrm{Co}_{2}\right.$ $\left.\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\}(\mathrm{CO})_{4}\right], \quad 2.254(2) \AA$. The "cis" orientation of the $\mathrm{CH}_{2} \mathrm{OH}$ substituents is illustrated by the $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ torsion angle of 27.5°. A "cis" orientation was also observed for $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ [45]. This "cis" orientation brings the two OH groups into close proximity, an observation that may be relevant here to the subsequent formation of $\mathbf{3}$ from $\mathbf{1}$ by dehydration-decarbonylation upon thermolysis.

2.3. Crystal structure of (2)

The structure of $\mathbf{2}$ as its ether solvate is displayed in Fig. 2, and selected bond distances and angles are presented in Table 2. The $\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand bridges two non-bonded cobalt atoms via pseudoaxial substitution of CO ligands from different Co_{2} (alkyne)(CO) $)_{6}$ units. This coordination mode has not been previously observed for a bridging ligand at a bis dicobalt-complexed diyne center. The P-P bond length in 2, 2.283(2) \AA, is longer than that observed in $\mathbf{1}$. The Ph substituents of the $\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand are staggered-gauche, resulting in a non-planar $\mathrm{Co}-\mathrm{P}-\mathrm{P}-\mathrm{Co}$ arrangement $\quad(\mathrm{Co}(2)-\mathrm{P}(1)-$ $\mathrm{P}(2)-\mathrm{Co}(3)$ torsion angle $\left.=47.5^{\circ}\right)$. This contrasts with

Table 2
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complex 2

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.4636(10)$	$\mathrm{Co}(3)-\mathrm{Co}(4)$	$2.4787(10)$
$\mathrm{Co}(1)-\mathrm{C}(13)$	$1.984(6)$	$\mathrm{Co}(1)-\mathrm{C}(12)$	$1.999(6)$
$\mathrm{Co}(2)-\mathrm{C}(12)$	$1.934(7)$	$\mathrm{Co}(2)-\mathrm{C}(13)$	$1.968(6)$
$\mathrm{Co}(2)-\mathrm{P}(1)$	$2.2219(16)$	$\mathrm{Co}(3)-\mathrm{C}(15)$	$1.945(6)$
$\mathrm{Co}(3)-\mathrm{C}(14)$	$1.979(6)$	$\mathrm{Co}(3)-\mathrm{P}(2)$	$2.1942(16)$
$\mathrm{Co}(4)-\mathrm{C}(15)$	$1.971(6)$	$\mathrm{Co}(4)-\mathrm{C}(14)$	$2.019(7)$
$\mathrm{P}(1)-\mathrm{P}(2)$	$2.283(2)$	$\mathrm{O}(11)-\mathrm{C}(11)$	$1.413(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.484(9)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.319(9)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.431(10)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.342(9)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.484(9)$	$\mathrm{O}(16)-\mathrm{C}(16)$	$1.426(7)$
$\mathrm{P}(1)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$152.02(6)$	$\mathrm{P}(2)-\mathrm{Co}(3)-\mathrm{Co}(4)$	$150.44(6)$
$\mathrm{Co}(2)-\mathrm{P}(1)-\mathrm{P}(2)$	$113.46(8)$	$\mathrm{Co}(3)-\mathrm{P}(2)-\mathrm{P}(1)$	$110.99(8)$
$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	$113.7(5)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$135.7(6)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$137.9(6)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$151.5(6)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$143.6(6)$	$\mathrm{O}(16)-\mathrm{C}(16)-\mathrm{C}(15)$	$110.4(5)$

the structure of $\mathbf{1}$ and of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{2}\left(\mathrm{CO}_{2}\right.\right.\right.$ $\left.\left.\mathrm{Me})_{2}\right\}(\mathrm{CO})_{4}\right]$ in which the $\mathrm{Co}-\mathrm{P}-\mathrm{P}-\mathrm{Co}$ atoms are planar and the Ph rings are eclipsed. Fully eclipsed, fully staggered and intermediate conformations of $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligands have been reported at different metal centers [1,46-54]. Comparison of the structures of $\mathbf{1}$ and $\mathbf{2}$ therefore clearly confirms that the $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand is flexible enough to be able to adopt a range of $\mathrm{M}-\mathrm{P}-\mathrm{P}-\mathrm{M}$ torsion angles when bridging two atoms of the same metal. Also, in contrast to complex 1, the diyne ligand in $\mathbf{2}$ lies in a "trans" configuration with a $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ torsion angle of 169.7°. Both "cis" and "trans" configurations have been previously reported. To date "cis" complexes [45-55] have been exclusively observed when heteroatoms are present in the β-position and "trans" complexes [31,56-58] when carbon atoms are present in the β-position. The diyne ligand is displaced towards the phosphorus-bonded cobalt atoms, $\mathrm{Co}(2)$ and $\mathrm{Co}(3)$. Thus, inspection of the $\mathrm{Co}-\mathrm{C}_{\text {diyne }}$ distances shows that $\mathrm{C}(12)$ and $\mathrm{C}(13)$ lie, respectively, 0.065 and $0.016 \AA$ closer to $\operatorname{Co}(2)$ than to $\mathrm{Co}(1)$. Likewise, $\mathrm{C}(14)$ and $\mathrm{C}(15)$ lie, respectively, 0.040 and $0.026 \AA$ closer to $\mathrm{Co}(3)$ than to $\mathrm{Co}(4)$. It is known that monodentate phosphine ligands prefer the pseudoaxial sites of alkyne dicobalt carbonyl complexes; X-ray structures of both monosubstituted $[4,59-64]$ and disubstituted [65-67] phosphine complexes confirm this. All previous X-ray structures of diphosphine-bridged alkyne dicobalt complexes have, however, exhibited pseudoequatorial substitution [5,56,68-79].

2.4. Crystal structure of (3)

The structure of $\mathbf{3}$ is shown in Fig. 3. Table 3 lists selected bond lengths and angles. The structure consists of a cluster core of four cobalt atoms arranged as a spikedtriangle, coordinated by a 9-electron donor bridging ligand consisting of a $2(5 \mathrm{H})$-furanone ring substituted at $\mathrm{C}(13)$ by a phosphino group and at $\mathrm{C}(12)$ by a

Fig. 3. ORTEP diagram of $\left[\mathrm{Co}_{4}\left\{\mu_{4}-\mathrm{CH}_{2}=\mathrm{CCC}=\mathrm{C}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{OCO}\right\}\left(\mu_{2}-\right.\right.$ $\left.\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7}(3)$, showing thermal ellipsoids at the 50% probability level.

Table 3
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complex 3

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.4847(4)$	$\mathrm{Co}(1)-\mathrm{Co}(3)$	$2.5234(5)$
$\mathrm{Co}(2)-\mathrm{Co}(3)$	$2.5777(4)$	$\mathrm{Co}(3)-\mathrm{Co}(4)$	$2.5520(5)$
$\mathrm{Co}(2)-\mathrm{P}(2)$	$2.2461(7)$	$\mathrm{Co}(4)-\mathrm{P}(2)$	$2.2676(7)$
$\mathrm{Co}(3)-\mathrm{P}(1)$	$2.2395(7)$	$\mathrm{Co}(1)-\mathrm{C}(1)$	$1.778(3)$
$\mathrm{Co}(1)-\mathrm{C}(2)$	$1.796(3)$	$\mathrm{Co}(1)-\mathrm{C}(3)$	$1.907(2)$
$\mathrm{Co}(2)-\mathrm{C}(4)$	$1.807(3)$	$\mathrm{Co}(2)-\mathrm{C}(5)$	$1.797(3)$
$\mathrm{Co}(3)-\mathrm{C}(3)$	$1.923(3)$	$\mathrm{Co}(3)-\mathrm{C}(6)$	$1.782(3)$
$\mathrm{Co}(4)-\mathrm{C}(7)$	$1.797(3)$	$\mathrm{Co}(4)-\mathrm{C}(8)$	$1.790(3)$
$\mathrm{Co}(1)-\mathrm{C}(9)$	$2.241(3)$	$\mathrm{Co}(1)-\mathrm{C}(10)$	$1.972(2)$
$\mathrm{Co}(2)-\mathrm{C}(10)$	$1.945(2)$	$\mathrm{Co}(3)-\mathrm{C}(11)$	$1.945(2)$
$\mathrm{Co}(4)-\mathrm{C}(11)$	$2.074(2)$	$\mathrm{Co}(4)-\mathrm{C}(12)$	$2.036(2)$
$\mathrm{Co}(4)-\mathrm{C}(13)$	$2.142(2)$	$\mathrm{P}(1)-\mathrm{C}(13)$	$1.806(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.377(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.441(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.410(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.417(4)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.485(3)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.509(4)$
$\mathrm{O}(9)-\mathrm{C}(15)$	$1.203(3)$		
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{Co}(3)$	$61.95(2)$	$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{Co}(3)$	$59.76(1)$
$\mathrm{Co}(1)-\mathrm{Co}(3)-\mathrm{Co}(2)$	$58.29(1)$	$\mathrm{Co}(1)-\mathrm{Co}(3)-\mathrm{Co}(4)$	$112.43(2)$
$\mathrm{Co}(4)-\mathrm{Co}(3)-\mathrm{Co}(2)$	$89.20(2)$	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Co}(3)$	$95.01(8)$
$\mathrm{Co}(2)-\mathrm{P}(2)-\mathrm{Co}(4)$	$105.88(3)$	$\mathrm{Co}(1)-\mathrm{C}(3)-\mathrm{Co}(3)$	$82.43(10)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Co}(1)$	$169.3(3)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Co}(1)$	$175.2(3)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Co}(1)$	$140.0(2)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Co}(3)$	$137.6(2)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{Co}(2)$	$176.9(3)$	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{Co}(2)$	$176.9(3)$
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{Co}(3)$	$178.4(3)$	$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{Co}(4)$	$174.0(3)$
$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{Co}(4)$	$176.8(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$123.9(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Co}(2)$	$125.9(2)$	$\mathrm{Co}(2)-\mathrm{C}(10)-\mathrm{Co}(1)$	$78.75(9)$
$\mathrm{C}(15)-\mathrm{O}(10)-\mathrm{C}(14)$	$111.1(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$135.2(2)$
$\mathrm{Co}(3)-\mathrm{C}(11)-\mathrm{Co}(4)$	$78.75(8)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.5(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$133.3(2)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	$108.8(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$106.2(2)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{P}(1)$	$112.9(2)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{P}(1)$	$133.5(2)$	$\mathrm{O}(10)-\mathrm{C}(14)-\mathrm{C}(13)$	$105.5(2)$
$\mathrm{O}(9)-\mathrm{C}(15)-\mathrm{O}(10)$	$122.3(3)$	$\mathrm{O}(9)-\mathrm{C}(15)-\mathrm{C}(12)$	$129.6(3)$
$\mathrm{O}(10)-\mathrm{C}(15)-\mathrm{C}(12)$	$108.1(2)$		

CCCH_{2} group. There are seven carbonyl ligands in terminal positions, two bonded to each of $\mathrm{Co}(1), \mathrm{Co}(2)$ and $\mathrm{Co}(4)$, and one bonded to $\mathrm{Co}(3)$. The remaining carbonyl bridges the $\mathrm{Co}(1)-\mathrm{Co}(3)$ bond. Although 3 obeys the 18 electron rule overall, $\operatorname{Co}(4)$ is electron-rich and $\mathrm{Co}(2)$ electron-poor. This is reflected in the slight asymmetry of the $\mathrm{Co}-\mathrm{P}_{\text {phosphido }}-\mathrm{Co}$ bridge. The $\mathrm{Co}(2)-\mathrm{P}(2)$ bond distance, $2.2461(7) \AA$, is thus shorter than the $\mathrm{Co}(4)-\mathrm{P}(2)$ distance, $2.2676(7) \AA$, and the $\mathrm{Co}(2)-\mathrm{P}(2)-$ $\mathrm{Co}(4)$ bond angle is $105.88(3)^{\circ}$. The $\mathrm{Co}(1)-\mathrm{Co}(2)-$ $\mathrm{Co}(3)$ triangle is not equilateral with the $\mathrm{Co}(2)-\mathrm{Co}(3)$ bond, $2.5777(4) \AA$, being longer than the $\mathrm{Co}(1)-\mathrm{Co}(2)$ and $\mathrm{Co}(1)-\mathrm{Co}(3)$ bonds $(2.4847(4)$ and $2.5234(5) \AA$, respectively). The vinyl bond length of $1.377(3) \AA$ is similar to those observed for other μ-vinyl ligands [25$28,80,81]$. Diyne functionalization by the phosphino group has taken place at one of the two outer diyne carbons as in the reaction of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{Ph}\right.\right.$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CPh})$] with bma [3].

In light of the long $\mathrm{P}-\mathrm{P}$ bond in 2, an attempt was made to induce $\mathrm{P}-\mathrm{P}$ cleavage in this molecule by further thermolysis. Refluxing a solution of $\mathbf{2}$ in toluene, however, led only to extensive decomposition. Decomposition of other phosphine-substituted alkyne cobalt carbonyl complexes tends to be fast at these temperatures. Thus, unlike in the thermolysis of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2}\right.\right.$ $\left.\left.\mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}-\mathrm{RC} \equiv \mathrm{CR}\right)(\mathrm{CO})_{4}\right]$, alkyne insertion into the $\mathrm{Ph}_{2} \mathrm{P}-\mathrm{PPh}_{2}$ bond of $\mathbf{2}$ is not observed. This may be due to the inherent rigidity of the core of complex 2 not allowing the phosphorus and alkyne carbon atoms to come into close enough proximity to couple. The fact that the $\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand occupies a pseudoaxial position in 2 rather than the pseudoequatorial positions it occupies in 1 and $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}-\mathrm{RC} \equiv \mathrm{CR}\right)(\mathrm{CO})_{4}\right]$ may also be significant.

2.5. Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$

Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with $\mathrm{HOCH}_{2} \mathrm{C} \equiv$ $\mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$ at $80^{\circ} \mathrm{C}$ in toluene produced a range

(4)

Scheme 3.
of products (Scheme 3), in moderate yields (see Section 4): Unreacted $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$, [13] $\left[\mathrm{Co}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}\right.$ $\left.(\mathrm{CO})_{6}\right],[13]\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CCCH}_{2} \mathrm{OH}\right)\right]$ [32] and $\left[\mathrm{Co}_{2}\left\{\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CCCH}_{2} \mathrm{OH}\right) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CO}\right\}\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right](4)$ were isolated. The identity of these complexes (except 4) was confirmed by comparison of their ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR and IR spectra with the literature values. The formula of complex 4 was assigned on the basis that its spectroscopic properties are closely similar to those of $\left[\mathrm{Co}_{2}\left(\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{CR}^{1} \mathrm{CR}^{2} \mathrm{CO}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{SiMe}_{3}, \mathrm{Me}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$ [1,2]. In addition, the regiochemistry of 4 was established by a single crystal X-ray diffraction study.

2.6. Crystal structure of (4)

The structure of $\mathbf{4}$ is displayed in Fig. 4, and selected bond distances and angles are presented in Table 4. The molecular structure of $\mathbf{4}$ is similar to that of $\left[\mathrm{Co}_{2}\left(\mu-\eta^{4}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{CHCPhCO}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$, reported by us [1]. One difference is that the diphenylphosphido ligand bridges the $\mathrm{Co}-\mathrm{Co}$ bond symmetrically in 4 . In $\left[\mathrm{Co}_{2}\right.$ $\left.\left(\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{CHCPhCO}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$, a slight asymmetry of the $\mathrm{Co}-\mathrm{P}_{\text {phosphido }}$ bonds presumably compensates for the formally uneven electron distribution over

Fig. 4. ORTEP diagram of $\left[\mathrm{Co}_{2}\left\{\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CCCH}_{2} \mathrm{OH}\right) \mathrm{C}\left(\mathrm{CH}_{2}\right.\right.\right.$ $\left.\mathrm{OH}) \mathrm{CO}\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ (4), showing thermal ellipsoids at the 50% probability level.

Table 4
Selected bond distances (\AA) and angles $\left(^{\circ}\right)$ for complex 4

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.5305(6)$	$\mathrm{Co}(1)-\mathrm{P}(1)$	$2.1943(9)$
$\mathrm{Co}(1)-\mathrm{P}(2)$	$2.1916(9)$	$\mathrm{Co}(2)-\mathrm{P}(2)$	$2.1921(9)$
$\mathrm{Co}(2)-\mathrm{C}(2)$	$2.071(3)$	$\mathrm{Co}(2)-\mathrm{C}(3)$	$2.110(3)$
$\mathrm{Co}(1)-\mathrm{C}(7)$	$2.008(3)$	$\mathrm{Co}(1)-\mathrm{C}(8)$	$1.796(4)$
$\mathrm{Co}(1)-\mathrm{C}(9)$	$1.814(4)$	$\mathrm{Co}(2)-\mathrm{C}(10)$	$1.772(3)$
$\mathrm{Co}(2)-\mathrm{C}(11)$	$1.799(4)$	$\mathrm{P}(1)-\mathrm{C}(3)$	$1.817(3)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.426(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.507(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.417(4)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$1.467(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.431(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.189(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.473(5)$	$\mathrm{O}(6)-\mathrm{C}(6)$	$1.395(4)$
$\mathrm{O}(7)-\mathrm{C}(7)$	$1.238(3)$	$\mathrm{O}(8)-\mathrm{C}(8)$	$1.133(4)$
$\mathrm{O}(9)-\mathrm{C}(9)$	$1.131(4)$	$\mathrm{O}(10)-\mathrm{C}(10)$	$1.141(4)$
$\mathrm{O}(11)-\mathrm{C}(11)$	$1.138(4)$		
$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{Co}(2)$	$75.37(3)$	$\mathrm{P}(2)-\mathrm{Co}(1)-\mathrm{Co}(2)$	$54.75(2)$
$\mathrm{P}(2)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$54.73(2)$	$\mathrm{C}(3)-\mathrm{P}(1)-\mathrm{Co}(1)$	$96.54(10)$
$\mathrm{Co}(1)-\mathrm{P}(2)-\mathrm{Co}(2)$	$70.51(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$116.5(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.5(3)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.8(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.9(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{P}(1)$	$110.7(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{P}(1)$	$123.7(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$178.2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$176.8(4)$	$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{C}(2)$	$122.2(3)$
$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{Co}(1)$	$124.1(2)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{Co}(1)$	$113.5(2)$
$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{Co}(1)$	$178.3(3)$	$\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{Co}(1)$	$174.8(3)$
$\mathrm{O}(10)-\mathrm{C}(10)-\mathrm{Co}(2)$	$177.9(3)$	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{Co}(2)$	$172.5(3)$

the two Co atoms. The two cobalt and two phosphorus atoms are close to co-planar, with a $\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{Co}(2)-$ $\mathrm{P}(2)$ torsion angle of 169.3°. The structure confirms that phosphido-diyne coupling has occurred regioselectively, such that the carbon bearing the free diyne substituent, $\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$ is adjacent to the phosphido group. Similar regioselectivity was observed in the reaction of bma with $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{PhC} \equiv \mathrm{CC} \equiv \mathrm{CPh}\right)\right]$ [3]. Regioselectivity has previously been observed in the reaction of unsymmetrical alkynes with $\left[\mathrm{Co}_{2}\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ and has been rationalized on the basis of the steric demands of the substituents. Of particular note is that $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{OH}$ reacted with $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}\right.$ $\left.(\mathrm{CO})_{6}\right]$ to give exclusively $\left[\mathrm{Co}_{2}\left\{\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right.\right.$ $\mathrm{CO}\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}$] [2]. Thus, the observation that 4 is formed regioselectively indicates that the $\mathrm{CH}_{2} \mathrm{OH}$ group is more sterically demanding than $\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$. The relatively modest yield of 4 can also be attributed to steric factors. It has previously been noted that bulky internal alkynes, when reacted with $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$, gave lower yields of $\left[\mathrm{Co}_{2}\left\{\mu-\eta^{4}-\mathrm{PPh}_{2} \mathrm{CRCRCO}\right\}(\mu-\mathrm{P}\right.$ $\left.\left.\mathrm{Ph}_{2}\right)(\mathrm{CO})_{4}\right]$ than less bulky internal and terminal alkynes $[2,6] .\left[\mathrm{Co}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{6}\right]$ is known to be produced during the thermolysis of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ under N_{2}, and therefore, its formation here is not surprising [13]. The production of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CC}\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$], however, involving complete loss of the cobalt-bonded phosphido ligands, was more unexpected. Related processes are known; for example, alkynes have been reported to cause phosphido loss, reacting with $\left[\mathrm{Co}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ to yield $\left[\mathrm{Co}_{2}(\mu\right.$-alkyne $\left.)\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ [7].

3. Conclusions

It is clear that the reactions of diynes with phosphidobridged cobalt carbonyl complexes and the reaction of biphosphines with diyne-bridged cobalt carbonyl complexes are more complicated than the corresponding monoyne reactions. With the monoyne systems many of the same complexes are obtained in both types of reaction. This is not the case with the diyne chemistry described here. Reaction of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\right.\right.$ diyne)] with $\mathrm{P}_{2} \mathrm{Ph}_{4}$ initially follows a similar pathway to that of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}(\mu\right.$-alkyne $\left.)\right]$. In both cases, $\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}$ complexes can be isolated. Complexes 2 and 3, however, formed on thermolysis of the $\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}$ substituted complex 1, do not have analogues in monoyne chemistry. Complex $\mathbf{2}$ is isomeric with 1, whereas complex $\mathbf{3}$ arises from 1 by dehydration-cyclocarbonylation of the co-balt-complexed diyne-diol, accompanied by coupling of a phosphido group derived from the $\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}$ ligand. A study of the reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with the 2,4-hexadiyne-1,6-diol showed some similarities as well as some differences as compared to the previously studied reactions of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with monoynes $[2,6]$. As in the reaction with monoynes a 5 -membered ring complex, 4, was formed, though in lower yield; phosphido loss, however, was also observed yielding $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CCCH}_{2} \mathrm{OH}\right)\right]$.

4. Experimental

4.1. General procedures

All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Solvents were freshly distilled from the appropriate drying agent. NMR spectra were recorded in CDCl_{3} using a Bruker DRX 400, 500 CryoProbe and AV 700 spectrometers with TMS as an external standard for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The quoted ${ }^{31} \mathrm{P}$ NMR data are referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ with downfield shifts positive. Infrared spectra were recorded in dichloromethane solution in 0.5 mm NaCl solution cells, using a PerkinElmer 1710 Fourier Transform spectrometer. Low resolution FAB mass spectra were obtained using a Kratos MS 890 instrument, using 3-nitrobenzyl alcohol as a matrix. High resolution FAB mass spectra were obtained using a Bruker Daltonics, Apex III instrument and Apollo ESI source. Samples were run as NaCl adducts using methanol/dichloromethane as a matrix. Preparative TLC was carried out on 1 mm silica plates prepared at the University of Cambridge. Column chromatography was performed on Kieselgel 60 (70-230 mesh). Elemental analyses were performed at Cambridge. Unless otherwise stated, all reagents were obtained from commercial suppliers and used without
further purification. $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2}\right.\right.$ $\left.\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)$] was prepared by the literature method $[32,82] .\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ was generated in situ from $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ and $\mathrm{PPh}_{2} \mathrm{H}$ using our previously reported modification of Geoffroy's procedure [2,13].

4.2. Reaction of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left\{\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2}\right.\right.$ $\left.\left.\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right\}\right]$ with $\mathrm{P}_{2} \mathrm{Ph}_{4}$

$2.26 \mathrm{~g} \quad(3.31 \mathrm{mmol})$ of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ and $1.23 \mathrm{~g}(3.32 \mathrm{mmol})$ of $\mathrm{P}_{2} \mathrm{Ph}_{4}$ were dissolved in 120 mL of toluene in a three-necked round bottomed flask. The mixture was heated at $65^{\circ} \mathrm{C}$ for 2 h and monitored by spot TLC. The solution was then cooled and the solvent was removed on a rotary evaporator. The residue was dissolved in the minimum quantity of ethyl acetate and adsorbed on to silica. The silica was pumped dry and added to the top of a chromatography column. Elution with ethyl acetate/hexane (1:4) gave 0.47 g of unreacted $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$. Further elution with ethyl acetate/hexane (1:3) gave 1.22 g (yield 47%, conversion 80%) of grey [$\left\{\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2}\right.\right.$ $\left.\left.\mathrm{Ph}_{4}\right)(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left\{\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}\right.$ $\mathrm{CH}_{2} \mathrm{OH}$ \}] (1). Complex 1: Anal. Calc. for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{Co}_{4} \mathrm{O}_{12} \mathrm{P}_{2}$ (1): C, $48.19 ; \mathrm{H}, 2.61$. Found: C, 47.46; H, 2.80%. FAB MS (m / e): $996\left(\mathrm{M}^{+}\right)$and $\mathrm{M}^{+}-$ $n \mathrm{CO}(n=3-10)$. HRMS calculated for $\mathrm{C}_{39} \mathrm{H}_{24} \mathrm{Co}_{4}$ $\mathrm{NaO}_{10} \mathrm{P}_{2}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 1018.8120, found 1018.8170. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2085$ (s), 2050 (vs), 2022 (vs), 1995 (m, sh), $1968(\mathrm{~m}) \mathrm{cm}^{-1}$. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.4-7.0(\mathrm{~m}, 20 \mathrm{H}$, $\mathrm{Ph}), 5.1-4.9\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.6(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}\right) \delta 204.9,204.1,199.4,198.6$ (br, CO's), 134 $128(\mathrm{~m}, \mathrm{Ph}), 102.4,95.0,87.2,83.6(\mathrm{~s}, \mathrm{C} \equiv), 64.4,64.0$ (s, $\left.\mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3}\right) \delta 7.2\left(\mathrm{~s}, \mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)$.

4.3. Thermolysis of $\left[\left\{\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\right.$ $\left.\left\{\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right\}\right]$

$0.60 \mathrm{~g}(0.60 \mathrm{mmol})$ of (1) was dissolved in 70 mL of toluene and heated at $95^{\circ} \mathrm{C}$ for 2.5 h . The mixture was cooled and the solvent removed. The residue was dissolved in the minimum of ethyl acetate and separated by preparative TLC. Elution with ethyl acetate/hexane ($1: 3$) gave 0.13 g (yield 21%) of black $\left[\mathrm{Co}_{4}\left\{\mu_{4}-\mathrm{CH}_{2}=\mathrm{CCC}=\mathrm{C}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{OCO}\right\}\right.$ (3) and 0.14 g (yield 23%) of brown $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{5}\right\}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}: \mu-\right.\right.$ $\left.\left.\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right]$ (2). Complex 2: Anal. Calc. for $\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{Co}_{4} \mathrm{O}_{13} \mathrm{P}_{2}$ (2) • $\mathrm{Et}_{2} \mathrm{O}: \mathrm{C}, 49.37$; H, 3.39. Found: C, 49.36 ; H, 3.39%. FAB MS (m / e): $996\left(\mathrm{M}^{+}\right)$and $\mathrm{M}^{+}-n \mathrm{CO}(n=1-10)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2067$ (m), 2052 (s), 2018 (sh), 2008 (s), 1968 (w) cm^{-1}. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.5-7.2(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 4.6-4.3(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.6(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 205.0$, 203.8, 200.4 ($\mathrm{s}, \mathrm{CO} \mathrm{s}$), 134-128 (m, Ph), 101.4, 80.0 (s,
$\mathrm{C} \equiv), 63.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3}\right) \delta 93.3\left(\mathrm{~s}, \mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)$. Complex 3: FAB MS (m / e): $950\left(\mathrm{M}^{+}\right)$and $\mathrm{M}^{+}-n \mathrm{CO}$ ($n=1-8$). HRMS calculated for $\mathrm{C}_{39} \mathrm{H}_{24} \mathrm{Co}_{4} \mathrm{NaO}_{10} \mathrm{P}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 972.8065, found 972.8157. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2056 (m), 2029 (s), 2012 (vs), 1824 (br), 1761 (br) cm^{-1}. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 7.8-6.9(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 4.51$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{C} H \mathrm{H}\right), 4.32\left(\mathrm{~m},{ }^{2} J_{\mathrm{HH}}=14 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 4.18\left(\mathrm{~m},{ }^{2} J_{\mathrm{HH}}=14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right), 3.54$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH} H\right) ;{ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3}\right) \delta 81.9(\mu-$ $\left.\mathrm{PPh}_{2} \mathrm{CR}=\mathrm{C}\right), 7.1\left(\mu-\mathrm{PPh}_{2}\right)$.

4.4. Reaction of $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ with HOCH_{2} $\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$

A solution of $1.60 \mathrm{~g}(2.25 \mathrm{mmol})$ of $\left[\mathrm{Co}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ in 30 mL of toluene was heated with $0.25 \mathrm{~g}(2.25 \mathrm{mmol})$ of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$ at $80^{\circ} \mathrm{C}$ for 1 h . The solution was cooled and the solvent removed. The residue was dissolved in the minimum of ethyl acetate and separated by preparative TLC. Elution with ethyl acetate/hexane (1:2) gave 0.11 g of orange $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right], 0.10 \mathrm{~g}$ (yield 7%) of green $\left[\mathrm{Co}_{3}\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{6}\right], 0.02 \mathrm{~g}$ (yield 2\%) of red $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\right.$ $\left.\left(\mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CCCH}_{2} \mathrm{OH}\right)\right], 0.12 \mathrm{~g}$ (yield 7%) of dark orange $\left[\mathrm{Co}_{2}\left\{\mu-\eta \eta^{4}-\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CCCH}_{2} \mathrm{OH}\right) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right.\right.$ $\left.\mathrm{CO}\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ (4). A number of other minor bands were observed but not isolated. Complex 4: FAB MS (m / e): $738\left(\mathrm{M}^{+}\right)$and $\mathrm{M}^{+}-n \mathrm{CO}(n=1-5)$. HRMS calculated for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{Co}_{2} \mathrm{NaO}_{7} \mathrm{P}_{2}\left(\mathrm{M}^{+}+\mathrm{Na}\right) 760.9709$, found 760.9775. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2052(\mathrm{~m}), 2022(\mathrm{~s}), 1982(\mathrm{~m})$, $1610(\mathrm{w}, \mathrm{br}) \mathrm{cm}^{-1}$. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta 8.33-7.20(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{Ph}), 4.38\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)$, $3.60\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCCH}_{2} \mathrm{OH}\right), 2.29(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{PCCH}_{2} \mathrm{OH}\right), 1.86\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$ $\delta 220.3$ (s, CCO), 206.1 ($\mathrm{s}, 1 \mathrm{CO}$), 203.3 ($\mathrm{s}, 1 \mathrm{CO}$), 200.5 ($\mathrm{s}, 2 \mathrm{CO}) 142-128(\mathrm{~m}, \mathrm{Ph}), 89.2(\mathrm{~s}, \mathrm{C} \equiv), 87.8(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=33 \mathrm{~Hz}, \quad \mathrm{PC}=C \mathrm{CO}\right), \quad 84.5 \quad(\mathrm{~s}, \quad \mathrm{C} \equiv), 62.3 \quad(\mathrm{~s}$, $\left.\mathrm{PCCH}_{2} \mathrm{OH}\right), \quad 51.8\left(\mathrm{~s}, \quad \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right), 40.8$ (dd, $\left.{ }^{1} J_{\mathrm{CP}}=38 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \quad \mathrm{PC}=\mathrm{CCO}\right) ;{ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3}\right) \delta$ 163.2 (br, $\mu-\mathrm{PPh}_{2}$), 55.3 (br, $\mu-\mathrm{PPh}_{2} \mathrm{CR}=\mathrm{CRCO}$).

4.5. X-ray crystallography

Intensity data were collected on a Nonius Kappa CCD diffractometer using Mo $\mathrm{K} \alpha$ radiation (graphite crystal monochromator $\lambda=0.71073 \AA$) and an Oxford Cryosystems Cryostream. The structures were solved using SIR-92 [83] and refined against all F^{2} data using shelxl-97 [84]. Hydrogen atoms were included in calculated positions. Black blocks of 1 were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane. The OH hydrogen atoms were located and refined successfully. Repeated attempts were made to grow crystals of $\mathbf{2}$ suitable for X-ray analysis from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane, but the crystals obtained did not diffract. Crystals grown by vapor diffusion of pentane into ether solution did produce fragile, crumbly brown

Table 5
Crystallographic data for $\left[\left\{\mathrm{Co}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)(\mathrm{CO})_{4}\right\}\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}\left\{\mu-\eta^{2}: \mu-\eta^{2}-\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right\}\right] \quad(\mathbf{1})$, $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{5}\right\}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\eta^{2}: \mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O}$ (2), $\left[\mathrm{Co}_{4}\left\{\mu_{4}-\mathrm{CH}_{2}=\mathrm{CCC}=\mathrm{C}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{OCO}\right\}\left(\mu_{2}-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7}(3)\right.$ and $\left[\mathrm{Co}_{2}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{CCCH}_{2}\right.\right.\right.$ $\left.\left.\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CO}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ (4).

	1	$2 \cdot \mathrm{Et}_{2} \mathrm{O}$	3	4
Formula	$\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{Co}_{4} \mathrm{O}_{12} \mathrm{P}_{2}$	$\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{Co}_{4} \mathrm{O}_{13} \mathrm{P}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{24} \mathrm{Co}_{4} \mathrm{O}_{10} \mathrm{P}_{2}$	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{Co}_{2} \mathrm{O}_{7} \mathrm{P}_{2}$
Fw	996.27	1070.39	950.24	738.36
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	P2(1)/n	P2(1)/c	$P \overline{1}$	$P \overline{1}$
$a(\mathrm{~A})$	13.0354(2)	17.6615(4)	11.1304(2)	10.0494(3)
b (${ }_{\text {A }}$)	8.7724(1)	10.5836(3)	11.7000(2)	12.5260(3)
$c(\mathrm{~A})$	36.0487(7)	24.3700(5)	15.9757(4)	14.4778(5)
$\alpha\left({ }^{\circ}\right)$			88.110(1)	67.998(1)
$\beta\left({ }^{\circ}\right)$	95.895(1)	92.334(2)	80.419(1)	80.891(1)
$\gamma\left({ }^{\circ}\right.$)			66.293(1)	67.751(2)
$V\left(\AA^{3}\right)$	4100.4(1)	4551.5(2)	1876.99(7)	1563.63(8)
Z	4	4	2	2
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.614	1.562	1.681	1.568
$F(000)$	2000	2168	952	752
Crystal size (mm)	$0.16 \times 0.05 \times 0.01$	$0.18 \times 0.07 \times 0.05$	$0.35 \times 0.16 \times 0.10$	$0.18 \times 0.12 \times 0.10$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.729	1.565	1.881	1.213
Radiation (λ) (A)	0.71073	0.71073	0.71073	0.71073
Temperature (K)	180	180	180	180
θ range (${ }^{\circ}$)	3.67-25.01	3.58-17.66	3.52-27.52	3.52-27.49
Reflections collected	23,414	12,391	16,995	15,565
Independent reflections	7148	2927	8562	7101
Number of parameters	529	573	496	421
Goodness of fit	1.011	1.182	1.147	1.007
$R_{1}[I>2 \sigma(I)]$	0.0498	0.0276	0.0345	0.0467
$w R_{2}[I>2 \sigma(I)]$	0.0772	0.0744	0.0955	0.0897

crystals. These crystals diffracted but, although analyzing exactly for carbon and hydrogen (see Section 4), resulted in poor quality data (99% complete at $2 \theta=17.5^{\circ}$). The OH hydrogen atoms were not located. Instead they were placed in chemically reasonable positions (with SHELXL/AFIX-83). Black blocks of $\mathbf{3}$ were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane. Red blocks of 4 were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane. Crystal data collection and refinement details are summarized in Table 5.

5. Supplementary material

Crystallographic data for the structural analyses has been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 260112, 260111, 260110 and 260113 for compounds $\mathbf{1 2 , 3}$ and 4, respectively. Copies of this information may be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk or by contacting The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033.

Acknowledgements

We acknowledge the financial support of the EPSRC for the purchase of the Nonius Kappa CCD diffracto-
meter. We thank Dr. John E. Davies for determining the crystal structures of $\mathbf{1}, \mathbf{2}, \mathbf{3}$ and $\mathbf{4}$. The ERSRC mass spectrometry service is thanked for collection of low resolution FAB MS data. Dr. A. Abdul-Sada at The University of Sussex, UK is thanked for collection of high resolution FAB MS data. We also thank Dr. Vladimir B. Golovko, University of Cambridge, for helpful discussions.

References

[1] A.J.M. Caffyn, M.J. Mays, G.A. Solan, D. Braga, P. Sabatino, G. Conole, M. McPartlin, H.R. Powell, J. Chem. Soc., Dalton Trans. (1991) 3103.
[2] A.J.M. Caffyn, M.J. Mays, G.A. Solan, D. Braga, P. Sabatino, A. Tiripicchio, M. Tiripicchio-Camellini, Organometallics 12 (1993) 1876.
[3] K. Yang, J.A. Martin, S.G. Bott, M.G. Richmond, Organometallics 15 (1996) 2227.
[4] J.C. Jeffery, R.M.S. Pereira, M.D. Vargas, M.J. Went, J. Chem. Soc., Dalton Trans. (1995) 1805.
[5] K. Yang, S.G. Bott, M.G. Richmond, J. Organomet. Chem. 516 (1996) 65.
[6] A.J. Edwards, M.J. Mays, P.R. Raithby, G.A. Solan, Organometallics 15 (1996) 4085.
[7] B.E. Hanson, P.E. Fanwick, J.S. Mancinila, Inorg. Chem. 21 (1982) 3811.
[8] K. Yang, S.G. Bott, M.G. Richmond, Organometallics 13 (1994) 3788.
[9] K. Yang, S.G. Bott, M.G. Richmond, Organometallics 14 (1995) 4977.
[10] A.J.M. Caffyn, M.J. Mays, G. Conole, M. McPartlin, H.R. Powell, J. Organomet. Chem. 436 (1992) 83.
[11] H. Lang, M. Leise, J. Organomet. Chem. 393 (1990) C17.
[12] H. Lang, M. Leise, L. Zsolnai, J. Organomet. Chem. 410 (1991) 379.
[13] A.D. Harley, G.J. Guskey, G.L. Geoffroy, Organometallics 2 (1983) 53.
[14] A.J. Edwards, A. Martin, M.J. Mays, P.R. Raithby, G.A. Solan, J. Chem. Soc., Chem. Commun. (1992) 1416.
[15] A.J. Edwards, A. Martin, M.J. Mays, D. Nazar, P.R. Raithby, G.A. Solan, J. Chem. Soc., Dalton Trans. (1993) 355.
[16] A.J.M. Caffyn, M.J. Mays, G.A. Solan, G. Conole, A. Tiripicchio, J. Chem. Soc., Dalton Trans. (1993) 2345.
[17] A. Vizi-Orosz, V. Galamb, G. Palyi, L. Marko, J. Organomet. Chem. 216 (1981) 105.
[18] G.A. Acum, M.J. Mays, P.R. Raithby, H.R. Powell, G.A. Solan, J. Chem. Soc., Dalton Trans. (1997) 3427.
[19] K. Yang, S.G. Bott, M.G. Richmond, Organometallics 14 (1995) 2718.
[20] C.G. Xia, K. Yang, S.G. Bott, M.G. Richmond, Organometallics 15 (1996) 4480.
[21] P.E. Garrou, Chem. Rev. 85 (1985) 171.
[22] J.B. Keister, J.R. Shapley, J. Organomet. Chem. 85 (1975) C29.
[23] A.F. Dyke, S.A.R. Knox, M.J. Morris, P.J. Naish, J. Chem. Soc., Dalton Trans. (1983) 1417.
[24] R.E. Colborn, A.F. Dyke, B.P. Gracey, S.A.R. Knox, K.A. Macpherson, K.A. Mead, A.G. Orpen, J. Chem. Soc., Dalton Trans. (1990) 761.
[25] G. Hogarth, M.H. Lavender, K. Shukri, Organometallics 14 (1995) 2325.
[26] S.A. MacLaughlin, S. Doherty, N.J. Taylor, A.J. Carty, Organometallics 11 (1992) 4315.
[27] J.A. Iggo, M.J. Mays, P.R. Raithby, K. Hendrick, J. Chem. Soc., Dalton Trans. (1983) 205.
[28] G. Conole, K. Henrick, M. McPartlin, A.D. Horton, M.J. Mays, New J. Chem. 12 (1988) 559.
[29] P.E. Garrou, Chem. Rev. 81 (1981) 229.
[30] D. Nucciarone, S.A. MacLaughlin, N.J. Taylor, A.J. Carty, Organometallics 7 (1988) 106.
[31] C.J. McAdam, N.W. Duffy, B.H. Robinson, J. Simpson, Organometallics 15 (1996) 3935.
[32] M.G. Karpov, S.P. Tunik, V.R. Denisov, G.L. Starova, A.B. Nikol'skii, F.M. Dolgushin, A.I. Yanovsky, Y. Struchkov, J. Organomet. Chem. 485 (1995) 219.
[33] S.P. Tunik, V.D. Khripoun, I.A. Balova, M.E. Borovitov, I.N. Domnin, E. Nordlander, M. Haukka, T.A. Pakkanen, D.H. Farrar, Organometallics 22 (2003) 3455.
[34] B. El Ali, H. Alper, J. Org. Chem. 56 (1991) 5357.
[35] J. Kiji, H. Konishi, T. Okano, S. Kometani, A. Iwasa, Chem. Lett. (1987) 313.
[36] K. Matsushita, T. Komori, S. Oi, Y. Inoue, Tetrahedron Lett. 35 (1994) 5889.
[37] W.Y. Yu, H. Alper, J. Org. Chem. 62 (1997) 5684.
[38] R. Rossi, F. Bellina, M. Biagetti, L. Mannina, Tetrahedron: Asymmetry 10 (1999) 1163.
[39] Y. Fukuta, I. Matsuda, K. Itoh, Tetrahedron Lett. 42 (2001) 1301.
[40] Z.X. Jiang, F.L. Qing, Tetrahedron Lett. 42 (2001) 9051.
[41] W.J. Xiao, H. Alper, J. Org. Chem. 62 (1997) 3422.
[42] A. Ogawa, H. Kuniyasu, N. Sonoda, T. Hirao, J. Org. Chem. 62 (1997) 8361.
[43] Y. Hu, Z. Yang, Org. Lett. 3 (2001) 1387.
[44] A. Tillack, M. Michalik, D. Fenske, H. Goesmann, J. Organomet. Chem. 454 (1993) 95.
[45] H. Amouri, C. Da Silva, B. Malezieux, R. Andres, J. Vaissermann, M. Gruselle, Inorg. Chem. 39 (2000) 5053.
[46] O. Kuhl, S. Blaurock, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 625 (1999) 1517.
[47] R.H.B. Mais, P.G. Owston, D.T. Thompson, A.M. Wood, J. Chem. Soc. A (1967) 1744.
[48] J.T. Lin, A.C. Yeh, Y.C. Chou, T.Y.R. Tsai, Y.S. Wen, J. Organomet. Chem. 486 (1995) 147.
[49] L.J. Arnold, L. Main, B.K. Nicholson, Appl. Organomet. Chem. 4 (1990) 503.
[50] L. Andersen, F. Hulten, Acta Chem. Scand. A 40 (1986) 701.
[51] C.N. Chau, Y.F. Yu, A. Wojcicki, M. Calligaris, G. Nardin, G. Balducci, Organometallics 6 (1987) 308.
[52] F. Calderazzo, R. Poli, D. Vitali, J.D. Korp, I. Bernal, G. Pelizzi, J.L. Atwood, W.E. Hunter, Gazz. Chim. Ital. 113 (1983) 761.
[53] J.L. Atwood, J.K. Newell, W.E. Hunter, I. Bernal, F. Calderazzo, I.P. Mavani, D. Vitali, J. Chem. Soc., Dalton Trans. (1978) 1189.
[54] C.M. Bartish, C.S. Kraihanzel, J. Organomet. Chem. 112 (1976) C31.
[55] L.J. Hope-Weeks, M.J. Mays, A.D. Woods, J. Chem. Soc., Dalton Trans. (2002) 1812.
[56] V.B. Golovko, M.J. Mays, A.D. Woods, New J. Chem. 26 (2002) 1706.
[57] B.F.G. Johnson, J. Lewis, P.R. Raithby, D.A. Wilkinson, J. Organomet. Chem. 408 (1991) C9.
[58] P. Magnus, D.P. Becker, J. Chem. Soc., Chem. Commun. (1985) 640.
[59] D.H. Bradley, M.A. Khan, K.M. Nicholas, Organometallics 8 (1989) 554.
[60] D.H. Bradley, M.A. Khan, K.M. Nicholas, Organometallics 11 (1992) 2598.
[61] J. Castro, A. Moyano, M.A. Pericas, A. Riera, A. AlvarezLarena, J.F. Piniella, J. Am. Chem. Soc. 122 (2000) 7944.
[62] F.E. Hong, F.C. Lien, Y.C. Chang, B.T. Ko, J. Chin. Chem. Soc. 49 (2002) 509.
[63] F.E. Hong, H. Chang, Y.C. Chang, B.T. Ko, Inorg. Chem. Commun. 4 (2001) 723.
[64] R.H. Cragg, J.C. Jeffery, M.J. Went, J. Chem. Soc., Dalton Trans. (1991) 137.
[65] J.J. Bonnet, R. Mathieu, Inorg. Chem. 17 (1978) 1973.
[66] R.P. Hughes, S.J. Doig, R.C. Hemond, W.L. Smith, R.E. Davis, S.M. Gadol, K.D. Holland, Organometallics 9 (1990) 2745.
[67] A. Meyer, A. Gorgues, Y. Le Floc'h, Y. Pineau, J. Guillevic, J.Y. Le Marouille, Tetrahedron Lett. 22 (1981) 5181.
[68] K.C. Nicolaou, P. Maligres, T. Suzuki, S.V. Wendeborn, W.M. Dai, R.K. Chadha, J. Am. Chem. Soc. 114 (1992) 8890.
[69] Y. Gimbert, F. Robert, A. Durif, M.T. Averbuch, N. Kann, A.E. Greene, J. Org. Chem. 64 (1999) 3492.
[70] P.H. Bird, A.R. Fraser, D.N. Hall, Inorg. Chem. 16 (1977) 1923.
[71] F.E. Hong, Y.C. Chang, R.E. Chang, S.C. Chen, B.T. Ko, Organometallics 21 (2002) 961.
[72] F.E. Hong, Y.C. Chang, C.P. Chang, Y.L. Huang, Dalton Trans. (2004) 157.
[73] F.E. Hong, Y.C. Lai, Y.J. Ho, Y.C. Chang, J. Organomet. Chem. 688 (2003) 161.
[74] F.E. Hong, Y.C. Chang, C.W. Chen, Y.L. Huang, J. Chin. Chem. Soc. 50 (2003) 973.
[75] F.E. Hong, H. Chang, Y.C. Chang, B.T. Ko, Chem. Lett. (2001) 1130.
[76] V. Derdau, S. Laschat, I. Dix, P.G. Jones, Organometallics 18 (1999) 3859.
[77] A. Gelling, J.C. Jeffery, D.C. Povey, M.J. Went, J. Chem. Soc., Chem. Commun. (1991) 349.
[78] J. Lewis, B. Lin, M.S. Khan, M.R.A. Al Mandhary, P.R. Raithby, J. Organomet. Chem. 484 (1994) 161.
[79] R.P. Aggarwal, N.G. Connelly, M.C. Crespo, B.J. Dunne, P.M. Hopkins, A.G. Orpen, J. Chem. Soc., Dalton Trans. (1992) 655.
[80] A.G. Orpen, J. Chem. Soc., Dalton Trans. (1983) 1427.
[81] A.G. Orpen, D. Pippard, G. Sheldrick, K.D. Rouse, Acta Crystallogr., Sect. B 34 (1978) 2466.
[82] G.F. Mohmand, K. Thiele, M.J. Went, J. Organomet. Chem. 471 (1994) 241.
[83] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 27 (1994) 435.
[84] G.M. Sheldrick, shelxl-97, Program for Crystal Structure Refinement, University of Göttingen, 1997.

[^0]: * Corresponding author. Tel.: +1 8686622002x3533; fax: +1 8686453771.

 E-mail addresses: acaffyn@fsa.uwi.tt (A.J.M. Caffyn), mjm14@ cam.ac.uk (M.J. Mays).

